The correct option is A -2.25
Given,
f(x)=12x4/3−6x1/3, x∈[−1,1]
Differentiating w.r.t. x, we get,
f′(x)=12.43x1/3−613x−2/3
=16x1/3−2x2/3=2(8x−1)x2/3
Now f′(x)=0
2(8x−1)=0
x=18
f(18)=12(18)4/3−6(18)1/3
=12(12)4−6(12)
=1216−3=−94
f(−1)=12(−1)4/3−6(−1)1/3=12(1)−6(−1)=18
f(1)=12(1)4/3−6(1)1/3=12−6=6
∴ Absolute minimum value =−94=−2.25