If f(x)=2sin3πx+x−[x], where [x] denotes the integral part of x is a periodic function with period
Open in App
Solution
Given f(x)=2sin3πx+x−[x].
Now we have x−[x] is periodic function of period 1 and sin3πx is periodic function of period 2 as x+1−[x+1]=x+1−[x]−1=x−[x] and sin3π(2+x)=sin3(2π+πx)=sin3πx.
Then sin3πx+x−[x] will be periodic and of period LCM of 1 and 2 .i.e. 2
Since sin3πx+x−[x] is periodic function of period 2 then f(x)=2sin3πx+x−[x] is periodic of period 2.
As f(x+2)=2sin3π(x+2)+(x+2)−[x+2]=2sin3πx+x−[x]=f(x).