If f(x)=(2011+x)n, where x is a real variable and n is a positive integer, then the value of
f(0)+f′(0)+f"(0)2!+....+f(n−1)(0)(n−1)! is.
f(x)=(2011+x)nf(0)+f′(0)+f′′(0)2!+f′′′(0)3!+.........fn−1(0)(n−1)!=2011+n(2011)n−12!+n(n−1)(2011)n−23!+......(n(n−1)....2!)(2011)(n−1)!=Cn0(2011)+Cn1(2011)n−1+......Cnn−1(2011)+Cnn(2011)0−1
=(2011+1)n−1
=(2012)n−1
Hence, option C is correct