If f(x)+2f(1−x)=x2+1 ∀ x∈R then f(x) is
13(x2−4x+3)
f(x)+2f(1−x)=x2+1 .........(i)
Replacing x by 1–x
f(1−x)+2f(x)=(1−x)2+1 .......(ii)
multiplying (ii) by 2 and subtracting it from (1), we get
−3f(x)=x2−2(1−x)2−1
3f(x)=2(1−x)2+1−x2 =(1−x)(2−2x+1+x) =(1−x)(3−x) =x2−4x+3
⇒f(x)=13(x2−4x+3)