The correct option is
B 1
If f(x)=2x+1;x≤1 Find no of pts where f(x) is not differentiable.
=x2+2;2x≤2
=4x2+2;x>2
At x=1
f′(x)|x=1−=limh→0f(x+h)−f(x)h
=limh→0(2(x+h)+1)−(2x+1)h∣∣∣x=1=2
f′(x)|x=1+=limh→0f(x+h)−f(x)h
=limh→0(x+h)2+2−(x2+2)h=limh→0h2+2xhh∣∣∣x=1
=2
Hence differentiable at x=1
At x=2
f′(x)|x=2−=limh→0f(x+h)−f(x)h
=limh→0((x+h)2+2)−(x2+2)h=limh→0h2+2xhh∣∣
∣
∣∣x=2=4
f′(x)|x=2+=limh→0f(x+h)−f(x)h
=limh→0(4(x+h)2+2)−(4x2+2)h=limh→04h2+8xhh∣∣
∣
∣∣x=2
=16
Hence Not differentiable at x=2
∴ There is a 1 ptnd differentiability.