The correct option is B 37
Since, g is the inverse function of f
⇒g(f(x))=x
Differentiate w.r.t x, we get
g′(f(x))⋅f′(x)=1
⇒g′(f(x))=1f′(x)
Now, f(x)=(2x−3π)5+43x+cosx
f′(x)=5(2x−3π)4⋅2+43−sinx
∴g′(f(x))=110(2x−3π)4+43−sinx
When f(x)=2π
2π=(2x−3π)5+43x+cosx
Since, in LHS, the power of π is 1 and in RHS the power of (2x−3π) is 5. So, solution exist only when x=3π2
∴g′(2π)=143+1=37