If f(x)=2x+|x|,g(x)=13(2x−|x|) and h(x)=f(g(x)), then domain of sin−1(h(h(h(h.....h(x).....))))n times is
A
[−1,1]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
[−1,−12]∪[12,1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
[−1,−12]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
[12,1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A[−1,1] Since, f(x)={2x+x,x≥02x−x,x<0={3x,x≥0x,x<0 and g(x)=13{2x−x,x≥02x+x,x<0=⎧⎨⎩x3,x≥0x,x<0 ∴f(g(x))=⎧⎪⎨⎪⎩3(x3)x≥0xx<0 ⇒f(g(x))=x,∀x∈R ∴h(x)=x ⇒sin−1(h(h(h....h(x)....)))=sin−1x ∴ Domain of sin−1(h(h(h(h.....h(x)....)))) is [−1,1] Hence, A is the correct answer.