If f(x)=3[sin4(3π2−x)+sin4(3π+x)]−2[sin6(π2−x)+sin6(5π−x)], then for all permissible values of x,f(x) is
3[sin4(3π2−α)+sin4(3π+α)] - [sin6(π2+α)+sin6(5π−α)] =
The expression 3[sin4(3π2−α)+sin4(3π+α)]−2[sin6(π2+α)+sin6(5π+α)] is equal to