The correct option is B [0,3√2]
f(x)=3sin√π216−x2
⇒ Domain is x∈[−π4,π4]
In the given domain, x2∈[0,π216]
⇒π216−x2∈[0,π216]
⇒√π216−x2∈[0,π4]
⇒sin√π216−x2∈[sin0,sinπ4](∵sinx is increasing function in [0,π4])
⇒3sin√π216−x2∈[0,3√2]
Hence Range is [0,3√2]