If f(x)=3[x]+5 and f(x)=5[x−2]+7 then ∫21x[x+f(x)]dx equals, where [.] respresents greatest integer function
A
63
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
632
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
126
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C632 f(x)=3[x]+5=5[x−2]+7⇒3[x]+5=5[x]−10+7⇒2[x]=8⇒[x]=4⇒xϵ[4,5)⇒4≤x<5 ∴x=4+ fraction part ∴f(x)=3[x]+5=5[x−2]+7∴f(4)=12+5=17 ∴[x+f(x)]=[4 + fraction part +17]=21 Now ∫21x[x+f(x)]dx=∫2121xdx=632