Given, f(x)=4x3−6x2cos2a+3xsin2a⋅sin6a+√log(2a−a2)
For f(x) to exist, log(2a−a2)≥0⇒(2a−a2)≥e0
ie, 2a−a2≥1 or a2−2a+1≤0
⇒(a−1)2≤0
Which is only possible, if (a−1)2=0 i.e., a=1
∴f(x)=4x3−6x2cos2+3xsin2⋅sin6
⇒f′(x)=12x2−12xcos2+3sin2sin6
⇒f′(12)=3−6cos2+3sin2sin6=3(1+sin2sin6)−6cos2
⇒f′(12)>0