Given:
f(x) = 4x − x2, x ∈ R
Now,
f(a + 1) = 4(a + 1) (a + 1)2
= 4a + 4 (a2 + 1 + 2a)
= 4a + 4 a2 1 2a
= 2a a2 + 3
f(a 1) = 4(a 1) (a 1)2
= 4a 4 (a2 + 1 2a)
= 4a 4 a2 1 + 2a
= 6a a2 5
Thus,
f(a + 1) − f(a − 1) = ( 2a a2 + 3) (6a a2 5)
= 2a a2 + 3 6a + a2 + 5
= 8 4a
= 4(2 a)