If f(x)=64x3+1x3 and α,β are the roots of 4x+1x=3. Then,
f(α)=f(β)=−9
Given:
f(x)=64x3+1x3⇒f(x)=(4x+1x)(16x2+1x2−4)⇒f(x)=(4x+1x)((4x+1x)2−12)⇒f(α)=(4α+1α)((4α+1α)2−12) and
f(β)=(4β+1β)((4β+1β)2−12)
Since α and β are the roots of 4x+1x=3
4α+1α=3 and 4β+1β=3⇒f(α)=3((3)2−12)=−9 and f(β)=3
((3)2−12)=−9⇒f(α)=f(β)=−9