wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=Asin(πx2)+B,f(12)=2 and 10f(x)dx=2Aπ, then the constant A and B are, respectively.

A
π/2 and π/2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4/π and 3/π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4/π and 4/π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4/π and 0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 4/π and 0
Given, f(x)=Asin(πx2)+B (1)

Differentiate w.r.t. x, we get,
f(x)=Acos(πx2)×π2

f(x)=Aπ2cos(πx2)

f(12)=Aπ2cos(π2×12)

f(12)=Aπ2cos(π4)

f(12)=Aπ2(12)

f(12)=Aπ22

Given, f(12)=2

Aπ22=2

A=22×2π

A=4π

Now, integrate equation (1) w.r.t. x, we get,
10f(x)dx=10[Asin(πx2)+B]dx

10f(x)dx=10Asin(πx2)dx+10Bdx

10f(x)dx=A[cos(πx2)π2]10+B[x]10

10f(x)dx=2Aπ[cos(πx2)]10+B[x]10

10f(x)dx=2Aπ[cos(π2)cos(0)]+B[10]

10f(x)dx=2Aπ[01]+B[1]

10f(x)dx=2Aπ+B

Given 10f(x)dx=2Aπ

2Aπ+B=2Aπ

B=0

Thus, answer is option (D)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon