If f(x)=(a−xn)1n,a>0 and nϵN, then prove that f(f(x))=x for all x.
We have, f(x)=(a−xn)1n,a>0 Now, f{f(x)}=f(a−xn)1n =[a−{(a−xn)1n}n]1n =[a−((a−xn))]1n =[a−a+xn]1n =(xn)1n =x ∴f{f(x)}=x Hence, proved.