If f(x) be a continuously increasing function satisfying the condition that f(x)=13[f(x+6)+6f(x+7)] and f(x)≥0 for all x ϵ R. If limx→∞f(x)=√m then value of m is
We have,
f(x)=13[f(x+6)+6f(x+7)] and f(x)=√m
So,
√m=13[f(x+6)+6f(x+7)]
Now,
f(x+6)=√m+6
f(x+7)=√m+7
√m=13[√m+6+6√m+7]
⇒√m=13[√m+6√m+7+6√m+7]
⇒3√m√m+7=√m+6√m+7+6
On squaring both side and we get,
9m(m+7)=(m+6)(m+7)+36+12√(m+6)(m+7)
⇒9m2+63m=m2+7m+6m+42+36+12√(m+6)(m+7)
⇒8m2+50m−78=12√(m+6)(m+7)
⇒4m2+25m−39=6√(m+6)(m+7)
On squaring both side and solve that,
m=3