The correct options are
A There are only two such functions are possible.
D f(x)=12007√2tan−1(x√2)
Given:
(f(x))2007=x∫0(f(t))20062+t2 dt
Using Newton-Leibniz theorem, we get
2007(f(x))2006×f′(x)=1×(f(x))20062+x2⇒(f(x))2006(2007f′(x)−12+x2)=0⇒f(x)=0 or 2007f′(x)=12+x2
Now,
2007f′(x)=12+x2⇒2007∫f′(x) dx=∫dx2+x2⇒2007f(x)=1√2tan−1(x√2)+C⋯(1)
From the given integral, we get
(f(0))2007=0∫0(f(t))20062+t2 dt⇒f(0)=0
Using equation (1), we get
2007f(0)=1√2tan−1(0√2)+C⇒C=0
Therefore,
f(x)=0
OR
f(x)=12007√2tan−1(x√2)