wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x) be a polynomial function satisfying
f(x)f(1x)=f(x)+f(1x) and f(4)=65. Then, find f(6).

Open in App
Solution

f(x)f(1x)=f(x)+f(1x)

f(x)f(1x)f(x)=f(1x)

f(x)=f(1/x)f(1/x)1 (i)

Also, f(x)f(1x)=f(x)+f(1x)

f(x)f(1x)f(1x)=f(x)

f(1x)=f(x)f(x)1 (ii)

On multiplying Eqs. (i) and (ii), we get,

f(x)f(1x)=f(1/x)f(x){f(1/x)1}{f(x)1}

(f(1x)1)(f(x)1)=1 (iii)

Since, f(x) is polynomial function, so (f(x)1) and f(1x)1 are reciprocals of each other. Also, x and 1x are reciprocals of each other.

Thus, Eq. (iii) can hold only when

f(x)1=±xn, where nR

f(x)=±xn+1 but f(4)=65

±4n+1=65 4n=64

4n=43 (4n>0)

n=3

So, f(x)=x3+1

Hence, f(6)=63+1=217
Ans: 217

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Some Functions and Their Graphs
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon