f(x)f(1x)=f(x)+f(1x)
⇒ f(x)f(1x)−f(x)=f(1x)
⇒ f(x)=f(1/x)f(1/x)−1 (i)
Also, f(x)f(1x)=f(x)+f(1x)
⇒ f(x)f(1x)−f(1x)=f(x)
⇒ f(1x)=f(x)f(x)−1 (ii)
On multiplying Eqs. (i) and (ii), we get,
f(x)f(1x)=f(1/x)f(x){f(1/x)−1}{f(x)−1}
⇒ (f(1x)−1)(f(x)−1)=1 (iii)
Since, f(x) is polynomial function, so (f(x)−1) and f(1x)−1 are reciprocals of each other. Also, x and 1x are reciprocals of each other.
Thus, Eq. (iii) can hold only when
f(x)−1=±xn, where n∈R
∴ f(x)=±xn+1 but f(4)=65
⇒ ±4n+1=65 ⇒ 4n=64
⇒ 4n=43 (∵4n>0)
⇒ n=3
So, f(x)=x3+1
Hence, f(6)=63+1=217
Ans: 217