If f(x) be a quadratic polynomial and ∫1−1f(x)dx=pf(−12)+qf(0)+rf(12), then |p+q+r| is
Let quadratic polynomial =ax2+bx+c=f(x)
∫1−1f(x)dx=∫1−1(ax2+bx+c)dx=[ax33+bx22+cx]1−1=2(a3+c)f(−12)=a4−b2+cf(0)=cf(12)=a4+b2+c
As given
23a+2c=P(a4−b2+c)+qc+r(a4+b2+c)23a+2c=a(P4+14)+(−P2+r2)b+(p+q+r)c
Compare co-efficients
p+q+r=2