If f(x) be an increasing function defined on [a, b] then
max {f(t) such that a≤t≤x, a≤x≤b}=f(x) & min {f(t), a≤t≤x, a≤x≤b}=f(a) and if f(x) be decreasing function defined on [a, b] then
max {f(t), a≤t≤x, a≤x≤b}=f(a),
min {f(t), a≤t≤x, a≤x≤b}=f(x).
On the basis of above information answer the following questions.
Let
f(x)=min{1,1−cosx,2sinx} then
∫π0f(x)dx is