If F(x)=⎡⎢⎣cosx−sinx0sinxcosx0001⎤⎥⎦ and G(x)=⎡⎢⎣cosx0sinx010−sinx0cosx⎤⎥⎦, then [F(x).G(x)]−1 is equal to:
A
F(−x)⋅G(−x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
G(x)⋅F(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
G(−x)⋅F(−x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
F(x)⋅G(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CG(−x)⋅F(−x) We can see, |F(x)|=|G(x)|=sin2x+cos2x=1 ⇒[F(x)]−1=⎡⎢⎣cosx−sinx0sinxcosx0001⎤⎥⎦T=⎡⎢⎣cosxsinx0−sinxcosx0001⎤⎥⎦=F(−x) and [G(x)]−1=⎡⎢⎣cosx0sinx010−sinx0cosx⎤⎥⎦T=⎡⎢⎣cosx0−sinx010sinx0cosx⎤⎥⎦=G(−x)
So, [F(x).G(x)]−1=[G(x)]−1⋅[F(x)]−1=G(−x)⋅F(−x)