If F(x)=⎡⎢⎣cosx−sinx0sinxcosx0001⎤⎥⎦, then show that F (x)F(y)=F(x+y).
LHS=F(x)F(y)=⎡⎢⎣cosx−sinx0sinxcosx0001⎤⎥⎦⎡⎢⎣cosy−siny0sinycosy0001⎤⎥⎦=⎡⎢⎣cosxcosy−sinxsiny−sinycosx−sinxcosy0sinxcosy+cosxsiny−sinxsiny+cosxcosy0001⎤⎥⎦
[∵cos(A+B)=cosAcosB−sinAsinBsin(A+B)=sinAcosB+sinBcosA]=⎡⎢⎣cos(x+y)−sin(x+y)0sin(x+y)cos(x+y)0001⎤⎥⎦
Now, replacing x by (x+y)in F(x) F(y)
∴F(x+y)=⎡⎢⎣cos(x+y)−sin(x+y)0sin(x+y)cos(x+y)0001⎤⎥⎦F(x)F(y)=F(x+y)=RHS. Hence, proved.