If f(x)=⎡⎢⎣cosx−sinx0sinxcosx0001⎤⎥⎦ and g(y)=⎡⎢⎣cosy0siny010−siny0cosy⎤⎥⎦, then [f(x)g(y)]−1 is equal to
A
F(x)G(−y)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
G(−y)F(−x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
F(x)−1G(y)−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
G(y−1)F(x−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is BG(−y)F(−x) Consider, [F(x)G(y)]−1=[G(y)]−1[F(x)]−1 ....(1) F(x)=⎡⎢⎣cosx−sinx0sinxcosx0001⎤⎥⎦ ⇒|F(x)|=cos2x+sin2x=1 adj(F(x))=CT=⎡⎢⎣cosx−sinx0sinxcosx0001⎤⎥⎦T ⇒adj(F(x))=⎡⎢⎣cosxsinx0−sinxcosx0001⎤⎥⎦ [F(x)]−1=⎡⎢⎣cosxsinx0−sinxcosx0001⎤⎥⎦
or, [F(x)]−1=⎡⎢⎣cos(−x)−sin(−x)0sin(−x)cos(−x)0001⎤⎥⎦ ⇒[F(x)]−1=F(−x) .....(2) G(y)=⎡⎢⎣cosy0siny010−siny0cosy⎤⎥⎦ |G(y)|=1 adj(G(y))=CT=⎡⎢⎣cosy0siny010−siny0cosy⎤⎥⎦T adj(G(y))=⎡⎢⎣cosy0−siny010siny0cosy⎤⎥⎦ ⇒[G(y)]−1=⎡⎢⎣cosy0−siny010siny0cosy⎤⎥⎦ ⇒[G(y)]−1=⎡⎢⎣cos(−y)0sin(−y)010−sin(−y)0cos(−y)⎤⎥⎦ ⇒[G(y)]−1=G(−y) ....(3) Substitute the values from (2) and (3) in (1), we get [F(x)G(y)]−1=G(−y)F(−x)