If f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩(1−cos2x)(3+cosx)xtanaxx<0;x(ex−1)1−cosxx>0; then find the value of a such that limx→0f(x) exists
A
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C4 limx→0−(1−cos2x)(3+cosx)xtanax=limx→0+x(ex−1)1−cosx ⇒limx→0−(2sin2x)(3+cosx)x2tanaxaxa=limx→0+2x(ex−1)4sin2(x/2) ⇒2×1×(3+1)a=2limx→0(x2)2sin2(x/2)(ex−1x) ⇒8a=2×1 ⇒a=4