If f(x)=⎧⎪⎨⎪⎩sin[x][x],[x]≠00,[x]=0where[x]denotes the greatest integer less than or equal to x, then
A
limx→0−f(x)=sin1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
limx→0+f(x)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
limit does not exist at x=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
limit exist at x=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Alimx→0+f(x)=0 Blimx→0−f(x)=sin1 D limit does not exist at x=0 f(x)=⎧⎪⎨⎪⎩sin[x][x][x]≠00[x]=0 ⇒f(x)=⎧⎪⎨⎪⎩sin[x][x]xϵR−(0,1)00≤x<1 At x=0RHL=limx→0+0=0 and LHL=limx→0−sin[x][x]=limh→0sin[o−h][o−h] =limh→0sin(−1)−1=sin1