If f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩[tan(π4+x)]1xforx≠0kforx=0 is continuous at x=0, find k.
Open in App
Solution
The function would be continuous if limx→0f(x)=f(0) limx→0f(x)=f(0) limx→0[tan(π4+x)]1x=k limx→0[1+tanx1−tanx]1x=k limx→0[1+1+tanx1−tanx−1]1x=k limx→0[1+1+tanx−1+tanx1−tanx]1x=k limx→0[1+2tanx1−tanx]1x=k limx→0[1+2tanx1−tanx]12tanx1−tanx×2tanxx(1−tanx)=k