If f(x)={[x]+[−x],x≠2λ,x=2, f is continuous at x=2 then λ is (where [⋅] denotes greatest integer)-
limx⟶2+f(x)=[2+]+[−2+]=2−3=−1limx⟶2−f(x)=[2−]+[−2−]=1−2=−1 For f(x) to be continuous limx⟶2+f(x)=limx⟶2−f(x)=f(2)=λ ⇒λ=−1