If f(x)=⎧⎨⎩x+2,whenx<14x−1,when1≤x≤3x2+5,whenx>3, then correct statement is-
f(x)=x+2 when x<1
=4x−1 when 1≤x≤3
=x2+5 when x>3
We have
limx→1−f(x)=limx→1−x+2=3
limx→1+f(x)=limx→1+4x−1=3
limx→3−f(x)=limx→3−4x−1=11
limx→3+f(x)=limx→3+x2+5=14
So we can see that f(x) is continuous at x=1 and not at x=3