The correct option is
D f is continuous but not differentiable at
x=2Given f(x)={x3−3x+2x<2x3−6x2+9x+2,x≥2
LHL =f(2−0)=limh→0(2−h)3−3(2−h)+2
=23−6+2=8−6+2=4
RHL =f(2+0)=limh→0(2−h)3−6(2+h)2+9(2+h)+2
23−6(2)2+9(2)+2=8−24+18+2=4
∵ LHL = RHL
∴ limx→2f(x) exist
and
f(2)=(2)3−6(2)2+9(2)+2
=8−24+18+2=4
∴ LHL = RHL =f(2)
So, f(x) is continuous at x=2
Now
f′(x)={3x2−3,x<23x2−12x+9,x≥2
∴ LHD:f′(2)=3(2)2−3=12−3=9
and
RHD:f′(2)=3(2)2−12(2)+9
=12−24+9=−3
∵ Lf′(2)≠Rf′(2)
∴ f(x) is not differentiable at x=2
Hence f is continuous but not differentiable at x=2