If f(x)=⎧⎨⎩xksin(1x),x≠00,x=0 is differentiable at x=0, then (where k is an integer)
Let f: R→R be defined byf(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩α+sin[x]2if x>0 2if x=0β+[sin x−xx3]if x<0where [y] denotes the integral part of y. If f is continuous at x=0, then β−α=
If f(x)={sinxx,x≠01,x=0,then limx→0 f(x)=is