The correct option is A f is continuous but not differentiable
f(x)={sin(1x)(1/x)}forx≠0⇒f(o)=0⇒f(o+)f(o+h)=sin(1(o+h))=limh→0sin(1/x)(1/x)=1⇒f(o−)=f(o−h)=limh→0sin1(o+h)(o+h)=−sin1h−1h=1⇒Rf′(o)=limh→0f(o+h)−f(o)h=limh→0{sin(1o+h−0)}=limh→0hsin1/h−0h⇒limh→0sin(1h),doesnotexistf(x)iscontinuousbutnotdifferentiatable