f(x)={x,x≤1x2+bx+c,x>1
f′(x)={1,x≤12x+b,x>1
f is a differentiable function.
So, f must be differentiable at x=1
Then it must be continuous at x=1 also.
limx→1−f(x)=limx→1+f(x)=f(1)⇒1=1+b+c⇒b+c=0
Also, limx→1−f′(x)=limx→1+f′(x)
⇒1=2+b⇒b=−1⇒c=1
∴5c−8b=13