If
f(x)={xsin1xx≠00x=0,
then limx→0f(x)=
1
0
-1
does not exist
Here f(0)=0 Since −1≤sin1x≤1⇒−|x|≤xsin1x≤|x|
We know that limx→0|x|=0 and limx→0−|x|=0 With the help of sandwich theorem we can say limx→0f(x)=0
If f(x)=xsin(1x),x≠0, then limx→0f(x)=