The correct option is
C coefficient of
x in
f(x) is zero
Let f(x)=
∣∣
∣
∣∣(1+3x)2a(1+2x)3b11(1+3x)2a(1+2x)3b(1+2x)3b1(1+3x)2a∣∣
∣
∣∣ =A+Bx+Cx2+Dx3+......................... ----------(1)
To find the constant term put x=0
Then equation (1) becomes
∣∣
∣∣111111111∣∣
∣∣=A
∴A=0
Constant term of f(x) is zero.
To find coeffcient of x, differentiate equation (1) with respect to x.
f′(x)=∣∣
∣
∣∣2a×3(1+3x)2a−13b×2(1+2x)3b−101(1+3x)2a(1+2x)3b(1+2x)3b1(1+3x)2a∣∣
∣
∣∣+∣∣
∣
∣∣(1+3x)2a(1+2x)3b102a×3(1+3x)2a−13b×2(1+2x)3b−1(1+2x)3b1(1+3x)2a∣∣
∣
∣∣
+∣∣
∣
∣∣(1+3x)2a(1+2x)3b11(1+3x)2a(1+2x)3b3b×2(1+2x)3b−102a×3(1+3x)2a−1∣∣
∣
∣∣=B+2Cx+3Dx2+....................... -------(2)
We need to find B. For that substitute x=0.
f′(0)=∣∣
∣∣6a6b0111111∣∣
∣∣+∣∣
∣∣11106a6b111∣∣
∣∣+∣∣
∣∣1111116b06a∣∣
∣∣=B
If any two rows of a determinant are same, then the determinant is zero.
Hence B=0.
∴Coefficient of x in f(x) is zero.