The correct option is D 0
As,
f(x)=∣∣
∣
∣∣cosxex22x cos2x2x2secxsinx+x312x+tanx∣∣
∣
∣∣⇒f(−x)=∣∣
∣
∣
∣∣cosxex2−2x cos2x2x2secx−(sinx+x3)12−(x+tanx)∣∣
∣
∣
∣∣⇒f(−x)=−f(x)
So, f(x) is an odd function.
Differentiating w.r.t x
⇒−f′(−x)=−f′(x)⇒f′(−x)=f′(x)
Again Differentiating
⇒−f′′(−x)=f′′(x)⇒f′′(−x)=−f′′(x)
So, f′′(x) is an odd function
Thus, f(x)+f′′(x) is odd function
Let,
ϕ(x)=(x2+1)⋅[f(x)+f′′(x)]⇒ϕ(−x)=−ϕ(x)
Therefore, ϕ(x) is an odd function.
∴π/2∫−π/2ϕ(x)dx=0