If f(x)=∣∣
∣∣sinx1012sinx1012sinx∣∣
∣∣ then ∫π2−π2f(x) equals
A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B0 f(x)=∣∣
∣∣sinx1012sinx1012sinx∣∣
∣∣ Expanding along first column we get, f(x)=sinx(4sin2x−1)−1(2sinx−0)=4sin3x−3sinx Clearly f(−x)=f(x)⇒ f is an odd function Hence ∫π2−π2f(x)=0