The correct option is B f (3)
f(x) = 2(x−3)(x−5); ∣∣
∣
∣∣1x+33(x2+3x+9)1x+54(x2+5x+25)113∣∣
∣
∣∣
(Taking out (x-3),(x-5) and 2 from Ist row, IInd row and IIIrd column respectively)
f(x)=2(x−3)(x−5)∣∣
∣
∣∣0(x+2)3(x2+3x+8)02x2+11x+73113∣∣
∣
∣∣, (R1 → R1−R3 and R2 → R2−R1)=2(x−3)(x−5)[1(x+2)(x2+11x+73)−6(x2+3x+8)]=2(x2−8x+15)(x3+13x2+95x+146−6x2−18x−48)=2(x2−8x+15)(x3+7x2+77x+98)=2(x5−x4+36x3−413x2+371x+1470)f(1)=2928, f(3)=0, f(5)=0∴ f(1).f(3)+f(3).f(5)+f(5).f(1) =0+0+0=0=f(3).