f(x)=kx(kx+√k)f(x)=kx(kx+k(1/2)) .......... (i)
On Dividing eq(i) by kx, we get
f(x)=11+k(1/2−x) ........ (ii)
As abac=a(b−c)
On putting x=r2n in eq(ii), we get
f(x)=11+k⎛⎝12−r2n⎞⎠
f(x)=11+k(n−r2n)
Now,
Let A=∑2n−1r=12f(r2n)=2∑2n−1r=1f(r2n)
Putting r=1,........,(n−1),n,(n+1),.....,(2n−1), we get the following values respectively
A=2×⎡⎣11+kn−12n+......+11+k12n+12+11+k−12n+......+11+k−(n−1)2n⎤⎦
A=2×⎡⎣11+kn−12n+......+11+k12n+12+k12nk12n+1+......+kn−12nkn−12n+1⎤⎦
On simplifying by adding first and last term; second and second last term ............; (n-1)th term and (n+1)th term
We get,
A=2×[1+1+1+1+....(n−1)times+12]
A=2×[n−1+12]
A=2×[n−12]
A=2n−1 ------eq(iii)
According to question, A=an+b;
So, on comparing it with eq(iii) we can say that
a=2; and b=−1;
So, a−b=2+1=3
a−b=3