If fx=cos-1x+cos-1x2+123-3x2, then
f23=π3
f23=2cos-123-π3
f13=π3
f13=π3+2cos-113
Explanation for the correct option.
Find the values of f13 and f23.
In the function fx=cos-1x+cos-1x2+123-3x2 substitute x=cosθ.
fx=cos-1cosθ+cos-1cosθ2+123-3(cosθ)2=θ+cos-112cosθ+321-cos2θ=θ+cos-1cosπ3cosθ+sinπ3sinθ[∵sin2θ=1-cos2θ,cosπ3=12,sinπ3=32]=θ+cos-1cosπ3-θ[∵cosA+B=cosAcosB+sinAsinB]=θ+π3-θ=π3
So for all x, fx=π3.
Thus, f13=π3 and f23=π3.
Hence, the correct options are A and C.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.