If f(x)=cos2(x)+cos2(x+1200)+cos2(x−1200), then value of f (π3) is-
We have,
f(x)=cos2x+cos2(x+120o)+cos2(x−120o)
Then, the value of
f(π3)=?
f(π3)=cos2(π3)+cos2(π3+120o)+cos2(π3−120o)
=cos2π3+cos2(π3+2π3)+cos2(π3−2π3)
=cos2π3+cos23π3+cos2(−π3)
=cos2π3+cos2π+cos2π3
=2cos2π3+cos2π
=2×(12)2+(−1)2
=12+1
=32
Hence, this is the answer.