The correct options are
A f′(x) has a point of local minimum at x=π4
B f′(x) has a point of local maximum in (−π4,0)
C f′(x) has exactly two points of extrema.
f(x)=cos2x⋅etanx
⇒f′(x)=−2cosxsinxetanx+cos2xetanxsec2x
⇒f′(x)=etanx⋅(1−sin2x)
⇒f′′(x)=etanxsec2x(1−sin2x)−2etanxcos2x
⇒f′′(x)=etanx[1+tan2x−2tanx+2(tan2x−1)1+tan2x]
⇒f′′(x)=etanx[(tanx−1)2+2(tan2x−1)1+tan2x]
⇒f′′(x)=etanx(tanx−1)[(tanx−1)+2(tanx+1)1+tan2x]
⇒f′′(x)=etanx(tanx−1)1+tan2x[tanx+tan3x−1−tan2x+2tanx+2]
⇒f′′(x)=etanx(tanx−1)1+tan2x[tan3x−tan2x+3tanx+1]
Now, let g(x)=tan3x−tan2x+3tanx+1
g′(x)=[3tan2x−2tanx+3]sec2x
For x∈(−π2,π2),
g′(x)>0,
so g(x) is an increasing function.
Now, f′′(π4)=0
f′′(−π4)f′′(0)<0
So, f′′(x)=0 has one root in (−π4,0)
f′(x) has exactly two points of local maxima/minima.
f′′(x)=0 has exactly two real roots in (−π2,π2)
At x=π4,
f′′(π4+)>0 and f′′(π4−)<0
So, f′(x) has local minimum at x=π4.