The correct option is D f(1)=1√3
limx→∞f(x)=cos(cot−1(sin(π2)))=1√2
limx→−∞f(x)=cos(cot−1(sin(−π2)))=−1√2
Also, sin(tan−1x)∈(−1,1)
⇒cot−1(sin(tan−1x))∈(π4,3π4)
⇒cos(cot−1(sin(tan−1x))∈(−1√2,1√2)
∴ Range of f is (−1√2,1√2)
f(1)=cos(cot−1(sinπ4))
=cos(cot−11√2)
=cos(tan−1√2) (∵cot−1x=tan−11x, x>0)
=cos(cos−11√3)
=1√3