If f(x)=cos(log x), then value of f(x)
f(4)−12{f(x4)+f(4x)} is
0
f(x)=cos(log x)
Then, f(x)f(4)−12{f(x4)+f(4x)}
=cos(log x) cos(log 4)−12{cos(log x4)+cos(log 4x)}
=12[cos(log x+log 4)+cos(log x−log 4)]−12{cos(logx4)+cos(log 4x)}
=12{cos(log 4x)+cos(log x4)−cos(log x4)−cos(log 4x)}
=12×0=0