1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Odd Extension of a Function
If fx=cos log...
Question
If f(x) = cos (log x), then value of
f
x
f
4
-
1
2
f
x
4
+
f
4
x
is
(a) 1
(b) −1
(c) 0
(d) ±1
Open in App
Solution
(c) 0
Given : f(x) = cos (log x)
Then,
f
x
f
4
-
1
2
f
x
4
+
f
4
x
=
cos
(
log
x
)
cos
(
log
4
)
-
1
2
cos
log
x
4
+
cos
log
4
x
=
1
2
cos
log
x
+
log
4
+
cos
log
x
-
log
4
-
1
2
cos
log
x
4
+
cos
log
4
x
=
1
2
cos
(
log
4
x
)
+
cos
log
x
4
-
cos
log
x
4
-
cos
log
4
x
=
1
2
×
0
=
0
Suggest Corrections
0
Similar questions
Q.
If
f
(
x
)
=
cos
(
log
x
)
,
x
>
0
;
then
the
value
of
f
(
x
)
f
(
4
)
−
1
2
(
f
(
x
4
)
+
f
(
4
x
)
}
=