If, f(x)=cos[π2]x+cos[−π2]x, where [x] stands for greatest integer function, then
f(π2)=1
f(π)=1
f(−π)=0
f(π4)=2
f(x)=cos[π2]x+cos[−π2]x f(x) = cos 9x + cos (-10)x f(x) = cos 9x + cos 10 x ∴ f(π2)=0−1=−1 f (π) = -1 + 1 = 0 f (−π) = -1 + 1 = 0 f(π4)=1√2+0=1√2
Iff(x)=cos[π2]x+cos[−π2]x , where [x] stands for the greatest integerfunction, then