If f(x)=cosx−x∫0(x−t)f(t)dt, then f′′(x)+f(x) is equal to
A
−cosx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x∫0(x−t)f(t)dt
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−cosx f(x)=cosx−x∫0(x−t)f(t)dt⇒f(x)=cosx−xx∫0f(t)dt+x∫0tf(t)dt ⇒f′(x)=−sinx−xf(x)−x∫0f(t)dt+xf(x) ⇒f′(x)=−sinx−x∫0f(t)dt⇒f′′(x)=−cosx−f(x)⇒f′′(x)+f(x)=−cosx