The correct options are
A f(π2)=−1
C f(−π)=0
f(x)=cos(π2]x+cos(−π2]xWe know, 9<π2<10 and −10<−π2<−9[π2]=9, [−π2]=−10∴f(x)=cos 9x +cos (−10x)⇒f(x)=cos (9x) +cos (10x)(∵ cos(−x) = cos(x))If x=π2, f(π2)=cos (9π2)+cos (5π)=−1 (True)If x=π, f(π)=cos (9π)+cos (10π)=0 (False)If x=−π, f(−π)=cos (−9π)+cos (−10π)=0 (True)If x=π4, f(π4)=cos (9π4)+cos (10π4)=1√2 (False)