The correct option is A -1
Putting u=xx and using logarithmic differentiation, we get log u = x log x.
⇒1ududx=x.1x+logx⇒dudx=xx(1+logx)
Similarly, if v=x−x, we get
dvdx=−x−x(1+logx)
∴f′(x)=−11+(xx−x−x2)2ddx(xx−x−x2)
=−4x2x+x−2x+2[12[(xx+x−x)(1+logx)]]
⇒f′(1)=−21+1+2[2(1+log1)]=−1