If f(x)=axax+√a(a>0), then ∑2n−1r=12f(r2n) is equal to
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2n−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(2n−1)a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2n−1 Solution −f(x)=axax+√a(a>0)⇒2n−1∑x=12f(r2n)⇒2f(12n)+2f(22n)+⋯+2f(2n−22n)+2f(2n−12n)⇒2[f(12n)+f(22n)+⋯+f(n2n)+f(n+12n)+⋯+f(2n−12n)]
(1)
Now, f(x)+f(1−x)=axax+√a+√a√a+ax=ax+√aax+√a=1−(2)
Using (2) we get ⇒2[f(12n)+f(2n−12n)+…+f(n−12n)+f(n+12n)]+2f(n2n)⇒2(n−1)+2f(12)−(3) Now put x=12 in f(x)+f(1−x)⇒f(12)+f(12)=1⇒f(12)=12
from equation 3⇒∑2n−1n=12f(n2n)=2(n−1)+12=2(n−1+12)=2n−1 then ,(c) is the correct option.