If f(x)=ex1+ex,I1=f(a)∫f(−a)xg(x(1−x))dx and I2=f(a)∫f(−a)g(x(1−x))dx, then the value of I2I1 is
A
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2 f(x)=ex1+exf(a)=ea1+eaf(−a)=e−a1+e−a=11+ea
So, f(−a)+f(a)=ea+11+ea=1
Let f(−a)=α;f(a)=1−α
Now, I1=1−α∫αxg(x(1−x))dx⋯(1)
Using property, ⇒I1=1−α∫α(1−x)g((1−x)(1−(1−x)))dx⇒I1=1−α∫α(1−x)g(x(1−x))dx⋯(2)
Adding (1) and (2),m ⇒2I1=1−α∫αg(x(1−x))dx=I2⇒I2I1=2